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Abstract 

Acoustics Emissions (AE) technology has emerged as a promising diagnostic approach. AE was originally developed for non-destructive 
testing of static structures, however, in recent times its application has been extended to health monitoring of rotating machines. This paper 
introduces a novel method for application of AE in monitoring of helicopter gearboxes. In addition this paper investigates the application of 
signal separation techniques in detection of bearing faults within the epicyclic module of a large helicopter (CS-29) main gearbox using 
Acoustic Emissions (AE). The results showed successful of AE in detection bearing fault within the helicopter gearbox. Detection of the small 
bearing defect gives the AE an indisputable diagnosis advantage and prove ability of application of AE in helicopter gearboxes. 
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1. Introduction 

   Helicopter transmission integrity is critical for safe 
operation. Approximately 16% of mechanical failures, 
resulting in the loss of helicopter operation, can be attributed 
to the main gearbox (MGB)[1]. In addition, 30% of the total 
maintenance cost of helicopters can be attributed to the 
transmission system [1]. The need to employ advanced fault 
warning systems for such transmission systems cannot be 
understated [2, 3]. Health and Usage Monitoring Systems 
(HUMS) are commonly used for fault detection of helicopter 
transmissions in which detection is based on extraction of 
predefined features of the measured vibration such as FM4, 
NA4, etc. [2, 4, 5]. HUMS was developed in North Sea 
operations, motivated in part by the crash to a Boeing Vertol 
234 in 1986 which was caused by disintegration of the 
forward main gearbox. After development in the 1990s, the 
UK’s Civil Aviation Authority CAA mandated fitment of 
HUMS to certain helicopters. One article suggests that HUMS 
“successes” are found at a frequency of 22 per 100,000 flight 
hours [6]. A HUM system consists of two complimentary 

subsystems: health monitoring and usage monitoring. Health 
monitoring is a process of diagnosing incipient damage or 
degradation that could ultimately lead to a system failure. 
Usage monitoring is a process by which the remaining life of 
different gearbox components and auxiliary systems is 
determined by assessing operation hours, current components 
condition and load history [7, 8]. Several vibration signature 
analysis methods are developed and applied in the commercial 
HUMS to detect faults in bearings, gears and shafts. Condition 
Indicators (CI) refer to the vibration characteristics extracted 
from these signatures and are used to reflect the health of the 
component [9]. Numerous condition indicators are calculated 
from vibration data to characterize component health and 
these indicators are often determined based on statistical 
measurement of the energy of the vibration signal, such as 
rms, kurtosis and crest factors. 

 
The majority of helicopters utilises epicyclic reduction 

modules gears as transmission systems due to their high 
transmission ratio, higher torque to weight ratio and high 
efficiency [10]. As such this type of gearbox is widely used in 
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many industries such as aerospace, wind turbines, mining and 
heavy trucks [11-15].  Different planetary gearbox 
configurations and designs allow for a range of gear ratios, 
torque transmission and shaft rotational characteristics. The 
planetary gearbox generally operates under severe conditions, 
thus the gearbox components are subject to different kinds of 
fault conditions such as gear pitting, cracks, etc. [16-19]. 
Recent investigations on applications of planetary gearboxes 
have shown that failures initiate at a number of specific 
bearing locations, which then progress into the gear teeth. In 
addition bearing debris and the resultant excess clearances 
cause gear surface wear and misalignment [19]. More recently 
the accident to the helicopter  registered G-REDL [20], 
resulting in the loss of 16 lives, was caused by the degradation 
of a planet gear bearing, interestingly, the HUM system 
condition indicators showed no failure evidence before this 
accident.  

2. Planetary gearbox diagnostics 

The use of Acoustics Emissions (AE) technology has 
emerged as a promising diagnostic approach. AE was 
originally developed for non-destructive testing of static 
structures, however, in recent times its application has been 
extended to health monitoring of rotating machines and 
bearings [21-24]. In machinery monitoring applications, AE 
are defined as transient elastic waves produced by the 
interface of two components or more in relative motion [25-
27] . AE sources include impacting, cyclic fatigue, friction, 
turbulence, material loss, cavitation, leakage, etc. It provides 
the benefit of early fault detection in comparison to vibration 
analysis and oil analysis due to the high sensitivity to friction 
offered by AE [28]. Nevertheless, successful applications of 
AE for health monitoring of a wide range of rotating 
machinery have been partly limited due to the difficulty in 
signal processing, interpreting and manipulating the acquired 
data [29-31]. In addition, AE signal processing is challenged 
by the attenuation of the signal and as such the AE sensor has 
to be close to its source. However, it is often only practical to 
place the AE sensor on the non-rotating member of the 
machine, such as the bearing housing or gearbox casing. 
Therefore, the AE signal originating from the defective 
component will suffer severe attenuation and reflections, 
before reaching the sensor. Challenges and opportunities of 
applying AE to machine monitoring have been discussed by 
Sikorska et. al and Mba et. al. [27, 32]. To date, most 
applications of machine health monitoring with AE have 
targeted single components such as a pair of meshing gears 
[33], a particular bearing or valve [34, 35]. This targeted 
approach to application of AE has on the whole demonstrated 
success. However the ability to monitor components that are 
secondary to the main component of interest such as a bearing 
supporting a gear, as is the case with planetary gears in an 
epicyclical gearbox, has not been well-explored. This is the 
first known publication to explore the ability to identify a fault 
condition where the AE signature of interest is severely 
masked by the presence of gear meshing AE noise. Also 
notably it is the first known application on a commercial 
helicopter main gearbox. The application of AE to this field is 

still in its early stages [28, 36, 37]. Moreover, there are limited 
publications on application of AE to bearing fault diagnosis 
within gearboxes [30]. This paper discusses the analysis of 
vibration and AE data collected from a CS-29 category ‘A’ 
helicopters industrial test facility and compares their 
effectiveness in diagnosing a bearing defect in the epicyclic 
module of helicopter main gearbox. The data was collected for 
various bearing fault conditions and processed using an 
adaptive filter algorithm to separate the non-deterministic part 
of the signal and enhance the signal-to-noise ratio for both 
AE. The resultant signatures were then further processed using 
envelope analysis to extract the fault signature. 

3. Signal processing and data analysis 

 
Bearing and gear fault identification involves the use of 

various signal processing algorithms to extract useful 
diagnostic information from measured vibration or AE signals. 
Traditionally, analysis has been grouped into three classes; 
time domain, frequency domain and time-frequency domain. 
The statistical analysis techniques are commonly applied for 
time domain signal analysis, in which descriptive statistics 
such as rms, skewness, and kurtosis are used to detect the 
faults [38, 39]. A fast Fourier transform (FFT) is commonly 
used to obtain the frequency spectra of the signals. The 
detection of faults in the frequency domain is based on 
identification of certain frequencies which are known to be 
typical symptoms associated with bearing or gear faults. The 
time-frequency domain methods are composed of the short-
time Fourier transform (STFT) [40], Wigner-Ville [38], and 
wavelet analysis [41, 42]. The use of these detection 
techniques are feasible for applications where a single 
component is being monitored however for applications that 
include several components, such as gearboxes, it is essential 
to employ separation algorithms.  

 
Signal separation was achieved using adaptive filter 

technique; methodology of using such technique is described 
by authors in [43-45] 

4. Experimental Setup 

Experimental data was obtained from tests performed on 
CS-29 Category ‘A’ helicopter gearbox which was seeded 
with defects in one of the planetary gears bearing of the 
second epicyclic stage. The test rig was of back-to-back rig 
configured and powered by two motors simulating dual power 
input.  

4.1. CS-29 ‘Category A’ helicopter main gearbox  

The transmission system of a CS-29 ‘Category A’ 
helicopter gearbox is connected to two shafts, one from each 
of the two free turbines engines, which drive the main and tail 
rotors through the MGB. The input speed to the MGB is 
typically in the order of 23,000 rpm which is reduced to the 
nominal main rotor speed of 265 rpm. 
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The main rotor gearbox consists of two sections, the main 
module, which reduces the input shaft speed from 23,000 rpm 
to around 2,400 rpm. This section includes two parallel gear 
stages. This combined drive provides power to the tail rotor 
drive shaft and the bevel gear. The bevel gear reduces the 
rotational speed of the input drive to 2,405 rpm and changes 
the direction of the transmission to drive the epicyclic 
reduction gearbox module. The second section is the epicyclic 
reduction gearbox module which is located on top of the main 
module.  This reduces the rotational speed to 265 rpm which 
drives the main rotor. This module consists of two epicyclic 
gears stage, the first stage contains 8 planets gears and second 
stage with 9 planets gears, see figure 1. The details of the 
gears are summarised in table 1. 

 

 

Figure 1 Second stage epicyclic gears 

 

Table 1 number of teeth for the gearbox gears 

First parallel stage 
Pinion teeth Wheel teeth 

23 66 

Second  parallel 
stage 

Pinion teeth Wheel teeth 

35 57 

Bevel stage 
Pinion teeth Bevel teeth 

22 45 

1st epicyclic stage 
Sun gear Planets gear – 8 

gears Ring gear 

62 34 130 

2nd epicyclic stage 
Sun gear Planets gear – 9 

gears Ring gear 

68 31 130 

 
The epicyclic module planet gears are designed as a 

complete gear and bearing assembly. The outer race of the 
bearing and the gear wheel are a single component, with the 
bearing rollers running directly on the inner circumference of 
the gear. Each planet gear is ‘self-aligning’ by the use of 
spherical inner and outer races and barrel shaped bearing 
rollers (see Figure 1).  

4.2. Experimental conditions and setup 

This investigation involved performing the tests for fault-
free condition, minor bearing damage and major bearing 
damage. The bearing faults were seeded on one of the planet 
gears of the second epicyclic stage. Minor damage was 
simulated by machining a rectangular section of fixed depth 
and width across the bearing outer race (10mm wide and 
0.3mm deep), see figure 2, and the major damage simulated as 
a combination of both a damaged inner race (natural spalling 
around half of the circumference) and an outer race (about 
30mm wide, 0.3mm deep), see figure 3. Three load conditions 
were considered for the each fault condition, 110% of 
maximum take-off power, 100% and 80% of maximum 
continuous power; the power, speed and torque characteristics 
of these load conditions are summarised in table 2. 

 
 
 

 

Figure 2   Slot across the bearing outer race 

 

 

Figure 3  Inner race natural spalling 
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Table 2 Test Load conditions characteristics 

Load Condition  Power 
(Kw) 

Rotor 
speed 
(RPM) 

Right 
input 
torque 
(Nm) 

Left 
input 
torque 
Nm) 

110% Max take-off power 
1760 265 368 368 

100% Max continuous 
power 1300 265 272 272 

80% Max continuous 
power 936 265 196 196 

4.3.  Fault frequencies 

To aid diagnosis all characteristic frequencies were 
determined, see table 3. These included gears mesh 
frequencies of the different stages and the bearing defect 
frequencies for planet bearing. 
 

 

Table 3      Gearbox characteristic frequencies 

 
Frequency components Frequency HZ 

Gears Meshes 

First parallel GMF Hz 8751.5 

Second parallel GMF 4640.94697 

Bevel stage GMF (Hz) 1791.24269 

1st epicyclic stage GMF 1671 

2nd  epicyclic stage GMF 573 

Faulty planet bearing 

Ball spin 45.31426 

Outer race 96.69819 

Inner race 143.9603 

Cage 7.438322 

4.4. Data acquisition and instrumentation 

Acoustic Emission data was collected using a PWAS 
sensor [46], 7mm diameter and approximately 0.2mm thick, 
bonded to the upper face of the planet carrier, see figure 4. 
The sensor was connected to a conditioning board attached to 
the planetary carrier and transmitted wirelessly using two 
coaxial copper coils and a new wireless transfer technique. 
The new wireless transfer technique utilise two single turn 
brass coils of approximately 400 mm diameter which were cut 
to size using water jets for accuracy. The stationary (upper) 
coil was suspended from two clamping rings which were 

attached to the top case of the gearbox with a spacer through 
the holes to retain location. The moving (lower) coil was 
attached to a circular mounting ring which was in turn 
mounted on top of the oil caps on the planet carrier, see 
figures 4 and 5. Electrical isolation of the coils from the 
mounts and surrounding metallic structure was achieved 
through the use of nylon washers and bushes. AE data was 
acquired at a sampling rate of 5 MHz using an NI PCI-6115 
card connected to a BNC-2110 connector block.  

 
 

 

Figure 4 Moving coil mounted on the planetary carrier (coil arrowed, sensor 
circled) 

 

Figure 5    Coils in position prior to assembly (static coil black arrow, moving 
coil white arrow) 

5. Acoustic Emission observations 

The Spectral Kurtosis was employed to extract the filter 
characteristics which were utilised for envelope analysis on 
measured AE signatures. Associated typical kurtograms of SK 
analysis are shown in Figure 6. The result of maximum 
kurtosis showed there were no noticeable differences between 
healthy and faulty conditions.  

 
The envelope analysis was undertaken using the central 

frequency Fc and bandwidth (Bw) estimated by SK analysis, 
see  
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table 4. Observations of figures 7, 8 and 9  showed the 

presence of the bearing outer race defect frequency (96 Hz) 
and its harmonic (192 Hz) for both minor and major damages 
under different loading conditions.  The results showed the AE 
is very capable in detecting the faults of different sizes, in 
addition the results showed the defect amplitude increased 
significantly for major fault compared to minor fault, which 
provide measure for fault severity. Moreover, the fault 
detection was independent of load condition. However, 
comparisons of defect amplitude should be performed under 
similar condition. 

 
 

 

Figure 6 SK kurtograms major defects ( 110% maximum take-off power) 

 

Table 4 Filter characteristics estimated based on SK for AE signals 

Case Load 
condition 

Center frequency 
Fc (Hz) 

Band Width 
(Bw) (Hz) 

Kurto
sis 

Fault-free  
110% of 
maximum  
take-off 
power 

1093750 312500 12 

Minor 
damage   

234375 52083 9 

Major 
damage   

312500 208333 7.9 

Fault-free  

100% of 
maximum 
continuous 
power 

1093750 312500 12 

Minor 
damage   

234375 52083 9 

Major 
damage  
condition  

312500 208333 7.9 

Fault-free  

80 % of 
maximum 
continuous 
power 

1093750 312500 12 

Minor 
damage  
condition  

234375 52083 9 

Major 
damage   

312500 208333 7.9 

 

 
 
 Figure 7   Enveloped spectra of AE signal (a) Fault-free (b) Major (c) Minor 
bearing defects at 110% maximum take-off power 
 

 

Figure 8  Enveloped spectra of AE signal (a) Fault-free (b) Major (c) Minor 
bearing defects at 100% maximum continuous power 
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Figure 9  Enveloped spectra of AE signal (a) Fault-free (b) Minor (c) Major 
bearing defects at 80% maximum continuous power 

 
 

6. Discussion and conclusion 

 
The techniques used in this paper are typically used for 

applications where strong background noise masks the defect 
signature of interest within the measured vibration signature. 
The AE signal is more susceptible to background noise and in 
this case, the arduous transmission path from the outer race 
through the rollers to the inner race and then the planet carrier 
makes the ability to identify outer race defects even more 
challenging.  However the use of the wireless system 
incorporated into the main gearbox has contributed 
significantly to improving signal-to-noise ratio. 

AE analysis was able to identify both the minor and major 
defect conditions. Detection of the small bearing defect gives 
the AE an indisputable diagnosis advantage and proves ability 
of application of AE in helicopter gearboxes. 

 
The ability of applied signal processing techniques to 

identify the presence of bearing fault is based on removing the 
masked signal and the identification of particular frequency 
regions with high impact energy; these impacts are due to 
presence of bearing defect which affect bearing sliding 
motion. Results of vibration analysis show sensitivity to the 
direction of vibration measurement. 

 
In summary an investigation employing external vibration 

and internal AE measurement to identify the presence of a 

bearing defect in a CS-29 ‘Category A’ helicopter main 
gearbox has been undertaken. A series of signal processing 
techniques were applied to extract the bearing fault signature, 
which included adaptive filter, Spectral Kurtosis, and 
envelope analysis. The combination of these techniques 
demonstrated the ability to identify the presence of the various 
defect sizes of bearing in comparison to a typical frequency 
spectrum. From the results presented it was clearly evident 
that the AE offered a much earlier indication of damage. 
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